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The coll isional  rotat ional  t ransi t ion probabil i t ies for  m o l e c u l e - m o l e c u l e  and m o l e c u l e - a t o m  
interact ions in three-d imens ional  space are  calculated. The quas ic lass ica l  approach devel- 
oped in [1] i s  used. Express ions  a re  obtained that a re  suitable for prac t ica l  calculations of 
s ingle-quantum and double-quantum rotat ional  t ransi t ions in diatomic molecules.  The col-  
lisional rotat ional  t ransi t ion probabil i t ies  a re  averaged over the Maxwell velocity dis t r ibu-  
tion and their  dependence on the gas t empera tu re  is obtained. To i l lustrate the method the 
resu l t s  of a calculation of the probabili t ies for HC1-HC1, HC1-He,  C O - C O  interaction a re  
presented.  

To give a r igorous quantitative descr ipt ion of rotational relaxation it is neces sa ry  to solve the kinetic 
equations of a multilevel system,  to solve which, in turn, it is n e c e s s a r y  to know the excitation (de-exci ta-  
tion) probabil i t ies of the rotat ional  states of the molecules when they collide with one another and with atoms 
of the inert  gases in the case of a mixture.  Various methods can be used to calculate the collisional ro ta -  
tional t ransi t ion probabil i t ies.  The c lass ica l  method does not give the required accuracy  and only provides 
a fa i r ly  rough est imate of the number of coll isions Zro t neces sa ry  to establ ish rotational equilibrium [2]. 
A number of papers  which have recent ly  appeared [3] are  based on a r igorous  quantum-mechanical  approach 
to the solution of the rotat ional  excitation problem. However, a r igorous  quantum-mechanica l  calculation 
cannot, in pract ice ,  give numer ica l  values of the collisional rotat ional  t ransi t ion probabili t ies averaged over 
the velocit ies of the colliding par t ic les  for the numerous rotat ional  levels of complex molecules when there 
is a sharp change in the gas tempera ture .  In this case  it is better to use the quas ic lass ica l  approach de- 
veloped by Takayanagi [1]. In his papers he solved the model problem in a plane~ and gave numerical  r e -  
sults for the coll isional  rotat ional  t ransi t ion probabili t ies for the N 2 - A r  interaction for  fixed velocities of 
the incident par t ic les .  Similar  calculations were also made in [4]. However, they also did not average  the 
rotat ional  t ransi t ion probabili t ies over the project ions of the rotational numbers  and the velocities of re la -  
tive motion of the colliding molecules.  

The essence  of the method is as follows. The t ra jec tory  of motion of a par t ic le  is calculated using 
the c lass ica l  approach,  and the time dependence of the perturbation opera tor  is obtained, by averaging which 
over the wave functions of the initial and final s tates the collisional rotat ional  t ransi t ion probabili t ies are  
obtained. A c lass ica l  calculation of the t r a j ec to ry  of molecular  motion is justified by the smallness  of the 
de Broglie wavelength compared with the charac te r i s t i c  atomic distances and the smallness  of the t r ans -  
fer red  rotat ional  quantum compared with the energy of t ranslat ional  motion of the par t ic les .  The resul ts  
will obviously depend to a considerable extent on the chosen interaction potential between the colliding pa r -  
t icles.  It follows f rom the Massey cr i te r ion  that the nonadiabatic interaction region is comparable with the 
~nternuclear distances of the molecule. We must  therefore  choose the shor t - r ange  potential to desc r ibe  
the interaction. It is usual in such cases  [1] to employ the potential in the form of the sum of the potential 
of the repulsive forces  between the individual a toms of the molecules.  The additivity of the potential is to 
some extent confirmed by experimental  data on the scat ter ing of molecular  beams [5]. In our investigation 
we chose the interaction potential in the form 
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v= ~ ~ A,~ exp (-- a,~r~), (i) 
k=3 i = i  

where r i k=  [ ( x ' - - x - R )  2+ (y,_y)2 + (Z ,-- Z)211/2 iS the dis tance between the two a toms  of the colliding molecules  
(Fig. 1). Assuming  a ik to be the s ame  for  a l l  pa i r s  of a toms ,  expanding the potent ia l  in t e r m s  of the p a r a m -  
e ter  ~ / R ,  and express ing  the cosines of the angles in t e r m s  of f i r s t -  and second-degree  Legendre  poly-  
nomials ,  we obtain 

g (R, ~1, ~2) = Be-~R I 1 + [P1 (cos X1) + P1 (cos 2~)1 -b 

D~ D 3 ~ ...]; 
-4- "-g- [P~ (cos ~l) + P2 (cos 22)] + - - ~  [Pi (cos ~i) P1 (cos Z2)] A- 

/ 

2 i --,2 m2 (A12 + A ~  + ,n i (AI~ + A l l  ) 
B = Z A~k + "-C ( ~ j  '(Wt I --~ D$2) 2 ; 

D~ (ml + m2) ~ 
_2 A _2, i  

~* "2 " * i  $~- -  "+2 all 

- for  the interact ion of two molecules ,  and 

g (R, 21) = Be-~R t + Pi (cos ~l) + ---ff P.,. (cos ~1) + ... ; 

m2Ala --~- lrt2A23 
S A ' A23 + + ( ~ a )  ~ = a3-r  " ( m i + m ~ p  ; (3) 

2 , 2 A Di = ~ m,~Al~ -- miA2a. I -o -2 m2Ax3 T rtt t ~n 

for  the interact ion between a molecule  and an a tom.  In both cases  the potent ia l  is spli t  into the product  of 
a r ad ia l  and an angular  par t .  The spher ica l ly  s y m m e t r i c a l  pa r t  of the potential  is used to calculate  the 
t r a j e c t o r y  of motion of the par t ic les ,  and the angular  pa r t  defines the se lect ion ru le  for  the rotat ional  t r a n s i -  
t ions.  We will consider  the choice of the numer i ca l  values  of ~ and Aik below. 

To calculate  the t r a j e c t o r y  of motion of the colliding pa r t i c les  in the center  of iner t ia  sy s t em we used 
the equation of conserva t ion  of energy  

' l ( d R )  2 J-'~ -2-~ ~ -  = E - - V ( R )  (4) "9.,r ' 2 '  J . / /  

where  35 is the reduced mass  of the two pa r t i c l e s ,  E is the total  energy  of the s y s t e m  V(R) is the i n t e r ac -  
tion potent ial  of the molecule  with the incident pa r t i c le ,  and J~ is the angular  moment  of re la t ive  rota t ion 
of the two par t i c les .  Note that in view of the law of conservat ion  of moment  the quantum number  J must  
change when j (the rota t ional  quantum number  of the molecule) changes.  However,  the e r r o r  due to ignoring 
the change in J is negligible for  s ingle-quantum and double-quantum t rans i t ions  (Aj = ~:1.2) for  l a rge  J ,  and 
for  sma l l  J the value of the energy of re la t ive  rotat ion i tself  is sma l l  compared  with the to ta l  energy of the 
sy s t em of pa r t i c l e s .  We made the following approximat ions  when solving Eq. (4) : we ignored the change 
in J,  the quantity R was replaced by Rc (the dis tance at which effect ive in teract ion between the pa r t i c les  
occurs) ,  and we used as the interact ion potential  the spher ica l ly  s y m m e t r i c a l  par t ,  namely ,  the main t e r m  
in the  expansions (2) and (3). Taking these  s impl i f icat ions  into account the solution of Eq. (4) takes the f o r m  

Be-~n(')'=. E~-- ~ )  ch -2 ~ \[ --  _ ~ ! , :  / t . (5) 

The rotat ional  motion of a s y s t e m  of two molecules  is descr ibed  by the Schr}~dinger equation 

{H(~) + H(~z)-? V[R (t)l W = ih~t ,  (6) 

where  H(r i) is the Hamiltonian opera to r  for  f r ee  rotat ion of the i -molecule ,  V[R(t)] is the per tu rba t ion  ope ra -  
tor ,  and q~ is the angular  pa r t  of the wave function of a s y s t e m  of two molecules  (or a m o l e c u l e - a t o m ) .  

Using the model of a r igid ro t a to r  to desc r ibe  the rotat ion,  the angular  pa r t  of the wave function of a 
sy s t em of two molecules  can be r ep re sen ted  in the f o r m  of an expansion in sphe r i ca l  functions,  
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' ~g = ~ C ( j ~ m d ~ m J m l O  Y (AmIIOVp~) Y (]=rn..lO2(P2) • 
j~mL.f2mzJm 

where Jk and m k a re  the rotat ional  quantum number  and its project ion on the z axis for the k-molecules ,  J 
and m are  the quantum number  and its project ion charac te r iz ing  the rotation of the sys tem as a whole, wk(Jk) 
is the energy of f ree  rotation of the k-molecule,  and w3(J) is the energy of re la t ive  rotat ion of the two mole-  
cules. 

Substituting the wave function (7) into Eq. (6), and solving it by the method of perturbat ion theory,  we 
obtain to a f i r s t  approximation the matr ix element of the rotat ional  t ransi t ion.  Then, averaging over the 
project ions of the quantum numbers m~, m2, and m, we obtain the coll isional  rotat ional  t ransi t ion probabil i-  
t ies 

where / (E )=  8:: ( 

and (10) ; 

pU(.]" j , E ~ = f ( E ) ( ~ ) '  9 J~ ](j--l) 
10- (2Yq-3)(2J--l) (21-}-1)(2j--t)' 

pn (j,, j~, Y, E) = ] (E) (_~_) ~ 2o! J,J2 
(z/~ + -5)-~d_ + ~) ' 

J2h2 ~ 

(8) 

(9) 

(10) 

= Jfi0, fi = (2 j -1 ) f l  0, and fl = (Jr + J2)P0, r e s p e c t i v e l y ,  f o r  Eqs .  (8), (9), 

and for double-quantum transi t ions 

/ J~h2 \--I12 

B, Di, D 2, and D 3 a r e  the corresponding express ions  for the interaction potentials of the m01ecule -molecu te  
(2), or m o l e c u l e - a t o m  (3) ; B0 is the rotat ional  constant of the molecule. 

Express ion (8) corresponds  to a single-quantum transit ion j - - j - l ;  express ion (9) corresponds  to a 
double-quantum transi t ion j - - j - Z ;  express ion (10) corresponds  to the exchange of a quantum between the 
molecules J l - - J 1 - 1 ,  J2-*J2 +1, and vice versa .  The f irs t  two expressions hold for collisions between a mole-  
cule and a molecule, and between a molecule and an atom. 

To calculate the kinetics of rotat ional  relaxation we need not the e lementary  coll ision probabili ty but 
the probabili ty as a function of the gas tempera ture ,  since in the overwhelming major i ty  of cases  of p rac t i -  
cal interest  a Maxwell velocity distribution becomes  established. We there fore  averaged the collisional 
rotat ional  t ransi t ion probabil i t ies over the quantum number of the relat ive sys tem rotation, and over the 
energies of re lat ive motion. Averaging over J was carr ied  out assuming a Boltzmann distribution 

~ [ ~3 (J)] 
P(j. J. E)(2J-~ l)exp -- kT J 

P(j, E) = J=o 

%" (2J -- 1) exp -- 
J = O  

and then averaging over the energies 

t ~ P (j, T) = ~ ! P (j, E) Z (E, T) dE, 

where Z(E, T)dE is the number  of collisions in unit t ime in the energy range f rom E to E +dE, and Z0(T) 
is the total  number of collisions in unit t ime at a t empera tu re  T. Carrying out these averagings we obtain 
for s ingle-quantum transi t ions 

a' f D,'~ ~ ," ~ [ 3(af) 2Is ] (11) 
~8o~. ~-~-) ~ exp el,r),/~ , 

P~(],T) 5 1f~72 Zo( T)Nd 2 ~a 4 [,--B-j[D:~ 2 i(i--I)(2i--I) if- i exp[ 3[a(2]--I)12/3](-~)I "3 

and for the change in the internal energy of both molecules (for a single quantum) 

P,1 (Jl, J~, 7) - ~ .-~5 zo(T) ~Bo~ 

(12) 

id~ (]I -- & -- Ip (2i2 § 4) ( ~  J 
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, j  

in expressions (11)-(13) M, BoB, D1, ])2, D3 have their  previous meanings, N is the par t ic le  density, d is the 

diameter  of the gas-kinetic c ross  section of the molecule, and a = ~rf lo2v'-Z-M-/~o 

Equation (13) corresponds  to the case A j I = - - I ,  Aj2=+I .  It is obvious that the probabili ty of t h i s t r a n -  
sition will be a maximum when J2 + 1=Jl �9 In th i s  case Eq. (13)is inapplicable and the probabili t ies must be 
calculated direct ly f rom Eq. (10). 

Let us consider  the choice of the pa ramete r s  Aik and a in the expression for  the potential, since they 
largely determine the values of the probabili t ies.  The numer ica l  values of Aik were taken f rom exper imen-  
tal data on the scat ter ing of molecular  beams [5]. One is not justified in choosing a f rom these experiments 
because of the large difference in the energy of relat ive motion of the par t ic les  in the experiments  with 
beams,  and in gas relaxation. We consider  that the most  rel iable method of choosing ~ is by comparing 
the number of collisions calculated using the collisional rotat ional  t ransi t ion probabili t ies with experimental  
data on the number of collisions Zro t neces sa ry  to establish equilibrium with respec t  to the rotat ional  de-  
grees  of freedom. Such a compar ison between the experimental  and theoret ical  number of collisions Zro t 
at different t empera tures  makes the choice of the values of ~ and Aik more  definite. The present  lack of 
experimental  data on the tempera ture  dependence of Zro  t in mixtures of diatomic polar  dipole molecules 
with inert  gases makes such an analysis  impossible without car ry ing  out additional experiments.  

To i l lustrate the method we made numer ica l  calculations of the coll isional rotat ional  t ransi t ion prob-  
abilities for the interaction of HC1-HC1, HC1-He,  and C O - C O  at t empera tures  of 300, 600, and 1000~ for 
the two values a = 1 and 2 ~-1 The resul ts  a re  shown in the form of graphs in Figs.  2-4. We used the fo!- 
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lowing numerical values of the quantities in the calculations: B0=21 �9 10 -16 and 3.83 �9 10 -16 erg, 4=1.27.10 -8, 
and 1.13 �9 i0 -8 em for HCI and CO; for the mixture HCI-HCI we took AII=10 -I0, Ai2=10 -9, and A22=10 -8 erg; 
for HC1-He we took AI3= 1.4-10 -1~ and A23--7.10 -9 erg; and for CO-CO we took All =AI2=A22 = 10 -8 erg. 
Since all the equations were obtained in the first approximation of perturbation theory, i.e., they only hold 
when the square of the modulus of the matrix element is less than unity, this imposes limitations on the 
energy of relative motion of the colliding particles, and on the number of rotational levels. 

The curves shown in the figures terminate at values of the eollisional rotational transition probabili- 
ties of the order of I/2. The calculation of probabilities close to unity is a strong-coupling problem and re- 
quires a more rigorous calculation as described in [3]. The almost exponentially falling curves as a func- 
tion of the number of the rotational level is common to all the collisional rotational transition probabilities ; 
it is due to the increase in the energy gap between the rotational levels. The value of this gap is determined 
by the rotational constant B0, so that for CO which has a smaller rotational constant, the slope of the curves 
is less than for HC1 and for mixtures of HC1-He. When the temperature is increased the collisions become 
more effective in the sense of energy transfer from the rotational degrees of freedom to translational de- 
grees of freedom, which agrees with the temperature dependence of the probabilities of vibrational transi- 
tions obtained by Landau and Teller. 

We will briefly consider the accuracy of the results obtained for the eollisional vibrational transition 
probabilities using this method. As already noted, thevalues of the probabilities depend to a considerable 
extent on the interaction potential, and the final result depends not so much on the form of the potential as on 
the value of the constants  Aik and ~. It is bes t  to improve  the accu racy  of the method with r e spec t  to the 
fo rm of the potential ,  the ave rag ing  method,e tc ,  a f te r  re l iable  expe r imen ta l  data becomes  avai lable  on the 
t e m p e r a t u r e  dependence of Z ro  t. 

It is c l ea r  that any fur ther  improvement  in the method will not lead to any apprec iab le  change in the 
dependence of the col l is ional  v ibra t iona l  t rans i t ion  probabi l i t ies  on the ro ta t ional  quantum number  j f i r s t  
obtained in this paper .  

The authors  thank E. K. Kamalova  for  ca r ry ing  out the computer  calculat ions of the col l is ional  r o t a -  
t ional t rans i t ion  probabi l i t ies .  
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