CALCULATION OF THE ROTATIONAL TRANSITION
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The collisional rotational transition probabilities for molecule—molecule and molecule—atom
interactions in three-dimensional space are calculated. The quasiclassical approach devel-
oped in [1] is used. Expressions are obtained that are suitable for practical calculations of
single-quantum and double-quantum rotational transitions in diatomic molecules. The col-
lisional rotational transition probabilities are averaged over the Maxwell velocity distribu-
tion and their dependence on the gas temperature is obtained. To illustrate the method the
results of a calculation of the probabilities for HC1—HCI], HC1—He, CO—CO interaction are
presented.

To give a rigorous quantitative description of rotational relaxation it is necessary to solve the kinetic
equations of a multilevel system, to solve which, in turn, it is necessary to know the excitation (de-excita-
tion) probabilities of the rotational states of the molecules when they collide with one another and with atoms
of the inert gases in the case of a mixture. Various methods can be used to calculate the collisional rota-
tional transition probabilities. The classical method does not give the required accuracy and only provides
a fairly rough estimate of the number of collisions Z ot necessary to establish rotational equilibrium [2].

A number of papers which have recently appeared [3] are based on a rigorous quantum-mechanical approach
to the solution of the rotational excitation problem. However, a rigorous quantum-mechanical calculation
cannot, in practice, give numerical values of the collisional rotational transition probabilities averaged over
the velocities of the colliding particles for the numerous rotational levels of complex molecules when there
is a sharp change in the gas temperature. In this case it is better to use the quasiclassical approach de-
veloped by Takayanagi [1]. In his papers he solved the model problem in a plane. and gave numerical re~
sults for the collisional rotational transition probabilities for the N,—Ar interaction for fixed velocities of
the incident particles. Similar calculations were also made in [4]. However, they also did not average the
rotational transition probabilities over the projections of the rotational numbers and the velocities of rela-
tive motion of the colliding molecules.

The essence of the method is as follows. The trajectory of motion of a particle is calculated using
the classical approach, and the time dependence of the perturbation operator is obtained, by averaging which
over the wave functions of the initial and final states the collisional rotational transition probabilities are
obtained. A classical calculation of the trajectory of molecular motion is justified by the smallness of the
de Broglie wavelength compared with the characteristic atomic distances and the smallness of the trans-
ferred rotational quantum compared with the energy of translational motion of the particles. The results
will obviously depend to a considerable extent onthe chosen interaction potential between the colliding par-
ticles. It follows from the Massey criterion that the nonadiabatic interaction region is comparable with the
internuclear distances of the molecule. We must therefore choose the short-range potential to describe
the interaction. It is usual in such cases [1] to employ the potential in the form of the sum of the potential
of the repulsive forces between the individual atoms of the molecules. The additivity of the potential is to
some extent confirmed by experimental data on the scattering of molecular beams [5]. In our investigation
we chose the interaction potential in the form
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where ri = [(x'—x—R)}+ (y'—y)2 + (z'—2)2]'/% is the distance between the two atoms of the colliding molecules
(Fig. 1). Assuming o i to be the same for all pairs of atoms, expanding the potential in terms of the param-
eter ¢ /R, and expressing the cosines of the angles in terms of first- and second-degree Legendre poly-

nomials, we obtain

V(R, X11 %e) = Be_“'R {1 + ‘%1“ [Py (cosyy) + Py (005 X1+

+ 3% [Pa (005 43) + Po 05 72)) + 5 [Py (cos 1) Py (cos )l + ..

B PR
D, = gomaldnt A;’:i = :: (Aa+dy),
Dy T

- for the interaction of two molecules, and

V (R, 1) = B [1 4 Py (cos ) + T Paloos ) + ..

2 2
1 Ays -+ miA
B= Ay -+ Ay + (B 2 (3)

MoA mid 1 m%An -+ m:;‘Ag.,
. 13— . . T :
Dz =t Latly T Tates. _02 == (EOL)’———-————

my - me {my -+ mg)?

for the interaction between a molecule and an atom. In both cases the potential is split into the product of

a radial and an angular part. The spherically symmetrical part of the potential is used to calculate the
trajectory of motion of the particles, and the angular part defines the selection rule for the rotational transi-
tions. We will consider the choice of the numerical values of o and Ajx below.

To caleulate the trajectory of motion of the colliding particles in the center of inertia system we used
the equation of conservation of energy
1 dR\? J 2k :

TM(W) =E—V(R) — 30, @)
where M is the reduced mass of the two particles, E is the total energy of the system V(R} is the interac-
tion potential of the molecule with the incident particle, and Jh is the angular moment of relative rotation
of the two particles. Note that in view of the law of conservation of moment the quantum number J must
change when j (the rotational quantum number of the molecule) changes. However, the error due to ignoring
the change in J is negligible for single-guantum and double~quantum transitions (Aj= +1.2) for large J, and
for small J the value of the energy of relative rotation itself is small compared with the total energy of the
system of particles. We made the following approximations when solving Eq. (4): we ignored the change
in J, the quantity R was replaced by R (the distance at which effective interaction between the particles

_occurs), and we used as the interaction potential the spherically symmetrical part, namely, the main term
inthe expansions (2) and (3). Taking these simplifications into account the solution of Eq. (4) takes the form
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The rotational motion of a system of two molecules is described by the Schrodinger equation

(B + B 4 VIR@) Y = ih 5, | (6)

where Hg.i) is the Hamiltonian operator for free rotation of the i~molecule, V[R(t)] is the perturbation opera-
tor, and ¥ is the angular part of the wave function of a system of two molecules (or a molecule—atom).

Using the model of a rigid rotator to describe the rotation, the angular part of the wave function of a
system of two molecules can be represented in the form of an expansion in spherical functions,
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where jx and my are the rotational quantum number and its projection on the z axis for the k-molecules, J
and m are the quantum number and its projection characterizing the rotation of the systemas a whole, wi(j)
is the energy of free rotation of the k-molecule, and wy(J) is the energy of relative rotation of the two mole~
cules.

Substituting the wave functiqn (7) into Eq. (6), and solving it by the method of perturbation theory, we
obtain to a first approximation the matrix element of the rotational transition. Then, averaging over the
projections of the quantum numbers m,, m,, and m, we obtain the collisional rotational transition probabili-
ties ‘
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B, Dy, D;, and D; are the corresponding expressions for the interaction potentials of the molecule—molecule
(2), or molecule—atom (3); B, is the rotational constant of the molecule.

Expression (8) corresponds to a single-quantum transition j ~j—1; expression (9) corresponds to a
double-guantum transition j—~j—2; expression (10) corresponds to the exchange of a quantum between the
molecules j; —j;—1, jy—i;+1, and vice versa. The first two expressions hold for collisions between a mole-
cule and a molecule, and between a molecule and an atom.

To calculate the kinetics of rotational relaxation we need not the elementary collision probability but
the probability as a function of the gas temperature, since in the overwhelming majority of cases of practi-
cal interest a Maxwell velocity distribution becomes established. We therefore averaged the collisional
rotational transition probabilities over the quantumnumber of the relative system rotation, and over the
energies of relative motion. Averaging over J was carried out assuming a Boltzmann distribution
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and then averaging over the energies
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where Z{E, T)dE is the number of collisions in unit time in the energy range from E to E+dE, and Z(T)
is the total number of collisions in unit time at a2 temperature T. Carrying out these averagings we obtain
for single-quantum transitions
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and for double-quantum transitions
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and for the change in the internal energy of both molecules (for a single quantum)
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In expressions (11)-(13) M, ByB, D;, D;, D3 have their previous meanings, N is the particle density, d is the

diameter of the gas~kinetic cross section of the molecule, and a=78,Vv 2M/of,

A Equation (13) corresponds to the case Aj; = —1, Aj,=+1. It is obvious that the probability of thistran-
sition will be a maximum when j,+1=j;. In-this case Eq. (13)is inapplicable and the probabilities must be
calculated directly from Eq. (10).

Let us consider the choice of the parameters Ajk and « in the expression for the potential, since they
largely determine the values of the probabilities. The numerical values of Ajy were taken from experimen-
tal data on the scattering of molecular beams [5]. One is not justified in choosing o from these experiments
because of the large difference in the energy of relative motion of the particles in the experiments with
beams, and in gas relaxation. We consider that the most reliable method of choosing o is by comparing
the number of collisions calculated using the collisional rotational transition probabilities with experimental
data on the number of collisions Z,.,; necessary to establish equilibrium with respect to the rotational de-
grees of freedom. Such a comparison between the experimental and theoretical number of collisions Zyet
at different temperatures makes the choice of the values of ¢ and Aji more definite. The present lack of
experimental data on the temperature dependence of Z,.; in mixtures of diatomic polar dipole molecules
with inert gases makes such an analysis impossible without carrying out additional experiments.

To illustrate the method we made numerical calculations of the collisional rotational transition prob-
abilities for the interaction of HC1—HCI, HCl1—He, and CO—CO at temperatures of 300, 600, and 1000°K for
the two values =1 and 2 A~! The results are shown in the form of graphs in Figs. 2-4. We used the fol-
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lowing numerical values of the quantities in the calculations: By=21-107'¢ and 3.83-107'¢ erg, £=1.27.107%,
and 1.13-107% cm for HCl and CO; for the mixture HC1—HCI we took A;;=1071, A}, =107°, and A,y =107% erg;
for HCl—He we took A;3=1.4-1071" and A,3=7-10"° erg; and for CO—CO we took A ;;=A;,=A,,=10"% erg.
Since all the equations were obtained in the first approximation of perturbation theory, i.e., they only hold
when the square of the modulus of the matrix element is less than unity, this imposes limitations on the
energy of relative motion of the colliding particles, and on the number of rotational levels.

The curves shown in the figures terminate at values of the collisional rotational transition probabili-
ties of the order of !/,. The calculation of probabilities close to unity is a strong-coupling problem and re-
quires a more rigorous calculation as described in [3]. The almost exponentially falling curves as a func-
tion of the number of the rotational level is common to all the collisional rotational transition probabilities;
it is due to the increase in the energy gap between the rotational levels. The value of this gap is determined
by the rotational constant By, so that for CO which has a smaller rotational constant, the slope of the curves
is less than for HCI and for mixtures of HCl—He. When the temperature is increased the collisions become
more effective in the sense of energy transfer from the rotational degrees of freedom to translational de-
grees of freedom, which agrees with the temperature dependence of the probabilities of vibrational transi-
tions obtained by Landau and Teller.

We will briefly consider the accuracy of the results obtained for the collisional vibrational transition
probabilities using this method. As already noted, the values of the probabilities depend to a considerable
extent on the interaction potential, and the final result depends not so much on the form of the potential as on
the value of the constants Ay and «. It is best to improve the accuracy of the method with respect to the
form of the potential, the averaging method,etc. after reliable experimental data becomes available on the
temperature dependence of Zygt.

It is clear that any further improvement in the method will not lead to any appreciable change in the
dependence of the collisional vibrational transition probabilities on the rotational quantum number j first
obtained in this paper.

The authors thank ﬁ K. Kamalova for carrying out the computer calculations of the collisional rota-
tional transition probabilities.
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